SHAKE THE FUTURE.

Étude en soufflerie atmosphérique du sillage d'une éolienne flottante

Sandrine Aubrun, Professor in Centrale Nantes Research lab on Hydrodynamics, Energetics and Atmospheric Environment (LHEEA)

GDR EOL-EMR Day, November 25, 2021

FLOATEOLE project

Experimental characterization of the wave impact on the unsteady aerodynamical behavior of floating wind turbines

- 2017-2022
- Grant 164k€
- Funders / Supports

FLOATEOLE project

L'équipe-projet

Sandrine AUBRUN Prof. ECN, éq. SEMREV+

Boris CONAN MCF ECN, éq. DAUC

Yves PERIGNON IR CNRS, éq. SEM-REV+

Jean-Marc ROUSSET IR ECN, éq. SEM-REV+

Benyamin SCHLIFFKE Doct. Éq. DAUC/SEMREV+

Antonin HUBERT Doct. Éq. DAUC/SEMREV+

Post-doc 2022

Methodology

- Multidisciplinary approach to study the wind wave structure coupling
- Experiments performed in controlled and real conditions (wind tunnel and sea test site, respectively)

Scientific and technical challenges :

- Does the floater motion have an impact on the wind turbine wake development?
- Can the signature of the motion be found in the wake?

- Wind tunnel testing: Floater motion emulation at very reduced scale
- Sea testing: scanning LiDAR measurement on floating structures

Technical challenges

• Wind tunnel experiments

- Design a motion system that can emulate the floaters movements in different sea states
- From idealised to extreme cases
- For a reduction scale of 1:400
- => High accelerations

- Onsite experiments
- Mitigate the influence of floater motions on the LiDAR measurements
- Stabilizing platform
- Control of the scanning head

Scanning Windcube

Credit: ©Ideol

Experimental set-up

Wind tunnel testing: Floater motion emulation at very reduced scale

Set-up in the atmospheric wind tunnel (Centrale Nantes/LHEEA)

Reduction scale 1:500 (No possible Reynolds similarity) + Far-wake = Actuator disc model (porous disc)

Experimental set-up

Wind tunnel testing: Floater motion emulation at very reduced scale

Set-up in the atmospheric wind tunnel (Centrale Nantes/LHEEA)

Reduction scale 1:500 (No possible Reynolds similarity) + Far-wake Actuator disc model (porous disc)

Experimental set-up

Scaling driven Scaling driven by wind Surge specifications by disc aerodynamics tunnel capacities \Rightarrow Characteristic A = L = 0.125D**Scaling factor** Value f.D f_{red}= =Str => Characteristic $f_{red} = \frac{t.D}{U_{red}} = 0.1$ Geometric $\Lambda_{1} = 500$ $\Lambda_v = 2.5$ **Kinematic** $\Lambda_{t} = 200$ Time Frequency $\Lambda_{\rm f}$ = 0.005 **Floating Wind turbine** U Atmospheric ref scaling Profile measurement boundary layer Full Wind Name scale tunnel flow Rotor diameter 80 m 16 cm D Nacelle height 60 m 12 cm h Char. floater surge motion L 10 m 2 cm Char. floater surge freq. 0.01 Hz 2 Hz f, Porous disc model ~4.5 D A : imposed amplitude Α f_{red}: imposed frequency CNIS red D : disc diameter U_{ref}: reference wind velocity Ben Schliffke's PhD work

Modelled atmospheric boundary layer

Roughness class	Target values	Modelled
Type of terrain	ice, snow, water surface	water surface
$z_0 [m]$	10^{-5} to 5×10^{-3}	$5.5~ imes~10^{-6}$
α	0.08 to 0.12	0.11
d_0 [m]	pprox 0	0

Modelled atmospheric boundary layer

Atmospheric boundary layer specifications

VDI 3783 versus IEC guidelines

Table: Comparison of VDI Guideline 3783 (VDI, 2000) for a modelled offshore boundary layer and IEC 61400-3 design load cases for offshore wind turbines (IEC, 2009). The reference height is the nacelle in this table. For neutral stratification.

Quantity	VDI Guideline 3783	IEC 61400-3	Modelled
l _{ref}	-	12%	-
Iu	5% - 10%	$I_{ref} \cdot (0.75 \cdot V_{hub} + b) b = 5.6m/s$	pprox 9%
α	0.08 - 0.12	0.14	0.11
validity of $lpha$	entire profile	rotor swept area	entire profile
stratification	neutral	no mention	neutral

- IEC 61400-3 overestimates turbulence intensity (especially at lower velocities; see the following slide) and α compared to the VDI.
- Calculating α according to IEC with our data results in

 $\alpha = 0.12$

Calculating I_u according to IEC with our (rescaled) data results in $I_u \approx 22\%$

Mean velocity profiles

Impact of platform motions on far-wake properties

Imposed frequency-varying Surge motion (fore-aft translation)

Velocity fluctuation spectra

Impact of platform motions on far-wake properties Imposed frequency-varying Surge motion (fore-aft translation)

Velocity fluctuation spectra

Imposed frequency-varying Surge motion (fore-aft translation)

Velocity fluctuation spectra

Impact of platform motions on far-wake properties Imposed frequency-varying Sway motion (side-to-side translation)

4.6D downstream, hub height

Conclusions

Idealised Motions

- Can the signature of the harmonic motion be found in the far-wake? **Yes!** (if the motion is sufficiently strong and depends on the motion frequency)
- Is this indicative of faster wake recovery? Yes, but only a little...

Next steps

- Regular and irregular 3DOF motions (surge, sway, pitch or roll)
- Wake meandering characterisation
- Wake interactions of two floating wind turbines

Final comments on the project strategy

Wind turbine far-wake characterisation

Wind tunnel experiments

- Controlled environmental conditions
- Separate the contribution of motions & physical mechanisms to the wake modifications
- Challenges to work a reduced scale
- Upscaling?

Full scale measurement

- Uncontrolled and constantly changing environmental conditions
- Huge technical challenges in offshore conditions (equipment integrity and measurement reliability)
- But real life!

