MASTER OF SCIENCE, TECHNOLOGY AND HEALTH

MECHANICAL ENGINEERING

COMPUTATIONAL MECHANICS

YEAR 1

PROGRAMME SUPERVISORS:
CHRISTIAN BURTIN, SEBASTIEN COMAS-CARDONA
MECHANICAL ENGINEERING - COMPUTATIONAL MECHANICS

YEAR 1 - AUTUMN SEMESTER

Numerical Methods
Fluid Mechanics 1
Vibrations and Differential Equations
Continuum Mechanics
Algorithmics for Engineering Modeling
Business Environment
Cultural and Communication English
French Language
NUMERICAL METHODS
MECHANICAL ENGINEERING - COMPUTATIONAL MECHANICS
YEAR 1 - AUTUMN SEMESTER

LEAD PROFESSOR: Grégory LEGRAIN

Objectives
At the end of the course (30 hours + personal work) the students will be able to:

- Classify standard PDEs (elliptic, parabolic, hyperbolic)
- Solve simple elliptic problems by means of finite differences or finite elements
- Solve simple parabolic problems, and assess their stability
- Assess the accuracy of the schemes they use
- Program finite differences and finite elements in both 1D and 2D

Course contents
These lectures aim to present classical numerical methods, their features and limitations.

- Classification of PDEs
- Classification of boundary conditions, well-posedness
- Introduction to finite differences
- Introduction to finite elements
- Parabolic problems

Homework and lab sessions will provide an understanding of the programming and main features of the methods.

Course material
- The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. T.J.R. Hughes
- Numerical Methods for Engineers and Scientists. J.D. Hoffman and S. Frankel

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>14 hrs</td>
<td>6 hrs</td>
<td>10 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
Objectives

At the end of the course (30 hours + personal work) the students will be able to:

- Describe the main physical properties of a fluid.
- Identify the specificities of fluid mechanics in the continuum mechanics framework (i.e. compared to solid mechanics).
- Identify the non-dimensional numbers at play in any fluid mechanics problem and deduce how to perform experiments with appropriate similarity.
- Understand the notion of stresses and its representation through stress tensor.
- Describe the physical meaning of each term in the Navier-Stokes' equations
- Identify the different flow regimes.
- Evaluate the generalized force applied on any object in still water.
- Understand when the perfect fluid assumption is valid.

Course contents

This course aims to present the foundations and general principles of fluid mechanics. The lectures cover the following topics:

- Physics of fluids
- Dimensional analysis
- Stress tensors and fluids
- Navier Stokes' equations
- Flow regimes: introduction to turbulence
- Fluid statics
- Bernoulli’s equation for a perfect fluid

In addition to those lectures, tutorials and lab sessions will allow the students to apply the theoretical knowledge to practical configurations.

Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>5</td>
<td>14 hrs</td>
<td>12 hrs</td>
<td>4 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
VIBRATIONS AND DIFFERENTIAL EQUATIONS
MECHANICAL ENGINEERING - COMPUTATIONAL MECHANICS
YEAR 1 - AUTUMN SEMESTER

LEAD PROFESSOR: Panagiotis KOTRONIS

Objectives
At the end of the course (30 hours + personal work) the students will be able to:

- Derive the dynamic equilibrium equation using variational principles
- Calculate the stiffness and mass matrices of discrete systems using the Lagrange equations
- Study linear vibrations about an equilibrium position
- Calculate the eigenmodes of discrete and continuum systems
- Apply the modal superposition technique
- Apply the Rayleigh-Ritz method

Course contents
These lectures aim at presenting the main aspects of the non-linear behaviour of steel, of concrete and of civil engineering structures. The main items of these lectures are:

- Discrete and continuum systems
- Hamilton principle
- Lagrange equations
- Linear vibrations about an equilibrium position
- Eigenmodal analysis
- Modal superposition technique
- Rayleigh-Ritz method

Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>16 hrs</td>
<td>14 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

Objectives

At the end of the course (30 hours + personal work), the students will:

- understand strain and stress notions, and be able write their mathematical representation correctly.
- know that there are different kinds of equations with different purposes (balance equations, constitutive equations, boundary conditions).
- be able to define the problem of the equilibrium of a deformable elastic solid body in infinitesimal strain by writing a Boundary Value Problem (BVP), and to choose the right set of boundary conditions.
- know the different possible approaches available to solve that BVP, and be able to solve it.

Course contents

This course is an introduction to continuum mechanics, and more generally to modelling in mechanics. The basic concepts required for more advanced fluid and solid mechanics courses are introduced here. The course then focuses on the study of the equilibrium of deformable solid bodies in linear elasticity and infinitesimal strain. This provides some basic tools required for engineers to design mechanical systems.

After some necessary lectures, the course is built on alternating the introduction of fundamental concepts and training examples, each lasting approximately 2 hours.

The course outline is as follows:

- Mathematics for continuum mechanics
- Introduction
- Kinematics
- Stresses
- Equations of conservation
- Constitutive equations
- Equations of linear elasticity in infinitesimal strain

Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>5</td>
<td>16 hrs</td>
<td>14 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
Objectives
At the end of the course the students will be able to:

- Identify and properly apply numerical methods to different engineering problems
- Understand algorithmic aspects and handle practical implementation issues
- Program and optimize algorithms in Matlab/Octave
- Use standard libraries for scientific computing in Matlab/Octave

Course contents
The course proposes a gentle introduction to numerical methods in scientific computing and their respective algorithms through practical problems that are often encountered in engineering applications. It will cover five fundamental topics: interpolation and differentiation, numerical quadrature, time-stepping integration techniques for ordinary differential equations, iterative solvers and nonlinear solvers.

Each topic will be presented through a practical application, that will serve as a basis to review implementation aspects as well as theoretical principles of the numerical methods involved. Several exercises in Matlab/Octave are proposed.

Course material
- Slides and Course Notes

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>10 hrs</td>
<td>20 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
BUSINESS ENVIRONMENT
MECHANICAL ENGINEERING - COMPUTATIONAL MECHANICS
YEAR 1 - AUTUMN SEMESTER

LEAD PROFESSOR: Spencer HAWKIDGE

Objectives

• Understand the general concepts of business English and marketing principles
• Understand the principles of given business models (for example: the collaborative economy)
• Build a professional project and explore international opportunities
• Develop strategies for inter-cultural practice
• Organize, lead and participate in discussions, interviews and meetings
• Strengthen self-confidence and level of conviction
• Develop active listening and understanding to reformulate, explain and argue
• Acquire notions of corporate culture and values
• Develop well-being at work and a sense of responsibility
• Enhance team work

Course contents

Business Environment: exercises to explore in practice the areas of business and marketing

Field-related or inter-cultural project:

• Field-based radio project: prepare, conduct and promote interviews for ECN’s radio programme: L’Heure Centrale (http://www.euradionantes.eu/emission/l-heure-centralienne), with the contribution of professors, doctorate students, industrial partners, industry players at fairs, etc.
• Inter-cultural project: construct a myplace4U eZoomBook, using the eZoomBook template. Devise a place branding strategy and analyse its impact on potential users of the myplace4U eZoomBook.

Course material

Written and televised press, information and digital tools, general documents business environment and company strategies.
Internet conferences (Ted Talks, etc.), our own educational materials on Hippocampus (Moodle).
Our own eZoomBook template for the Intercultural project.

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>14 hrs</td>
<td>16 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

Page 8 of 24
CULTURAL AND COMMUNICATION ENGLISH
MECHANICAL ENGINEERING - COMPUTATIONAL MECHANICS
YEAR 1 - AUTUMN SEMESTER

LEAD PROFESSOR: Spencer HAWK RIDGE

Objectives

Introduction to Cultural and Communicational English:

- Understand the general concepts of communication English (different levels of language, etc.)
- Build a communicational project
- Develop strategies for enhanced interaction
- Organize, lead and participate in discussions, interviews and meetings
- Behavioral skills in an inter-cultural environment:
 - Strengthen engagement and level of conviction
 - Develop a capacity to explain and argue
 - Acquire notions of corporate culture and values
 - Enhance team work

Course contents

Cultural and Communicational English: exercises to explore in practice the areas of culture and communication
Inter-cultural project (for example, documentary project, publishing project: construct a work of fiction or of educational value and experience the complete publishing process)

Course material

Written and televised press, information and digital tools, general documents business environment and company strategies.
Internet conferences (Ted Talks, etc.), our own educational materials on Hippocampus (Moodle).
Our own eZoomBook template for the Intercultural project.

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>0 hrs</td>
<td>32 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
</tr>
</tbody>
</table>
Objectives
The objective is to familiarize the learner with the French language and French culture through an entertaining task-based communicative language teaching, focused on speaking combined with:

- Phonetics
- Self-correcting exercises on our learning platform
- Learning Lab activities
- Project work
- Tutoring

Course objectives include the acquisition and reinforcement of vocabulary, syntax, and pronunciation by both traditional means and through the use of digital resources. Students will learn general French, develop language skills of oral and written comprehension and expression.

After completing this course (32 hours + personal work), the students will be able to communicate in spoken and written French, in a simple, but clear manner, on familiar topics in the context of study, hobbies etc. Another important goal of this course is to introduce the student to French culture. At the end of the course (2 semesters), complete beginners can achieve an A1 level and some aspects of the A2 of The Common European Framework of Reference for Languages. More advanced students may aim for B1/B2 levels.

Course contents
Full range of practical communication language exercises: reading comprehension, listening comprehension, written expression, oral expression.

Learners will be able to use the foreign language in a simple way for the following purposes:

1. Giving and obtaining factual information:
 - personal information (e.g. name, address, place of origin, date of birth, education, occupation)
 - non-personal information (e.g. about places and how to get there, time of day, various facilities and services, rules and regulations, opening hours, where and what to eat, etc.)

2. Establishing and maintaining social and professional contacts, particularly:
 - meeting people and making acquaintances
 - extending invitations and reacting to being invited
 - proposing/arranging a course of action
 - exchanging information, views, feelings, wishes, concerning matters of common interest, particularly those relating to personal life and circumstances, living conditions and environment, educational/occupational activities and interests, leisure activities and social life
3. Carrying out certain transactions:
 - making arrangements (planning, tickets, reservations, etc.) for travel, accommodation, appointments, leisure activities
 - making purchases
 - ordering food and drink

Course material

Preparation manuals, our own tailor-made documents, written and televised press, internet, general civilization documents, digital tools, our own educational materials on Hippocampus (Moodle).

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>0 hrs</td>
<td>32 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
</tr>
</tbody>
</table>
MECHANICAL ENGINEERING – COMPUTATIONAL MECHANICS

YEAR 1 - SPRING SEMESTER

Fluid Mechanics 2
Probability and Statistics
Programming and Algorithmics
Structural Mechanics
Conferences and Initiation to Research
Numerical Analysis
Cultural and Communication English
French Language
Objectives
At the end of the course (30 hours + personal work) the students will be able to:

- Apply the potential flow theory to simple configurations in fluid dynamics.
- Identify the limitations of the potential flow theory.
- Identify the sources of head loss in an internal flow.
- Evaluate the necessary power of a pump in a hydraulic system.
- Calculate the forces exerted on an object in a flow using Euler’s theorem.
- Design experimental facilities for head loss identification and force measurements.

Course contents
This course is a follow-up to ‘Fluid Mechanics 1’, which presents the fundamentals and general principles of fluid mechanics. The aim is now to provide simple tools/formula to extract global information which is useful from an engineering point of view for fluid mechanics problems. The lectures cover the following topics:

- Potential flows
- Transport theorems and integral balances in fluid mechanics
- Head losses and the generalized Bernoulli’s equation
- Momentum balance: Euler’s theorem

In addition to those lectures, tutorials and different lab sessions will allow the students to apply the theoretical knowledge to practical configurations.

Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>5</td>
<td>8 hrs</td>
<td>10 hrs</td>
<td>12 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
Objectives

At the end of the course (30 hours + personal work) the students will be able to:

- Describe and model a random experiment (sample set, set of events, probability, using random variable, random vectors) together with probability axioms, independence, conditionality
- Calculate the probability distribution, moments of random variable and random vectors
- Manipulate the usual probability distributions (Bernoulli, Binomial, Poisson, Exp, Normal, Chi-square, etc)
- Construction of approximations of probability distributions using different definitions of convergence, and convergence theorems for sequences of random variables
- Apply tools developed for probability to statistics
- Calculate some statistical estimators by means of point wise estimation, interval estimation
- Undertake some statistical tests and apply regression

Course contents

In this course, we are interested in the modelling of random experiments (e.g. playing cards, playing dices, voting intentions, life duration of an electronic component, efficiency of a drug, defects of a material etc.) To that end, we will introduce in the first part the mains tools needed in probability theory to describe such an experiment:

- Probability definition
- Random variables
- Random vectors
- Function of random variables
- Sequences of random variables

Then, in the second part we will be interested in observations and study of the data associated to some random experiments through statistics. In particular, we will focus on statistical models.

- Pointwise estimation
- Estimation by confidence interval
- Tests
- Regression

Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>5</td>
<td>14 hrs</td>
<td>16 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
Objectives

At the end of the course (30 hours + personal work) the students will be able to:

- Handle creation and compilation of simple programs in C++ with basic algorithms (loop, function, computing with array, etc)
- Understand programs using all kind of variables (standard, pointer reference, array and enumeration)
- Understand programs using object-oriented paradigm (basic concept, Inheritance, Polymorphism) and associated algorithms (encapsulation, etc)
- Understand programs using template paradigm (template function, template class) and associated algorithms (generality, etc)
- Understand programs using STL library and associated algorithms (linked list, trees, hash function, etc)
- Acquire knowledge on development tools.

Course contents

Lectures present, step by step, all the programmatic and algorithmic components of a rich programming language: C++ [1]. This language first offers a way to learn the key concepts of structured programming and compilation which are rather common in other languages (C, Fortran, Basic etc). Some advanced aspects such as pointer and reference will also be studied in this first part of the course. Basic algorithmic concepts (bloc, scope, loop, function, etc) are given in this introduction.

Then, based on this knowledge, the students will learn other programming paradigms that are also available in this language:

- Object-oriented programming. Basic concept and design are presented first. Then two important aspects, Inheritance and Polymorphism, are explained to have a general idea of object-oriented strength.
- Template programming. Function and class template are briefly presented to understand the concept of genericity in a strongly typed language like C++.

Finally associated to C++ standard, the STL Library [2] is explained. Understanding of the two previous paradigms are mandatory to follow this last part. It is an introduction designed to help students to navigate in this vast library that offers really efficient tools and encapsulates complex algorithms.

To conclude the course, a lecture is dedicated to development tools that help programmers. Homework and lab sessions will provide a way to assimilate lecture content.
Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>14 hrs</td>
<td>0 hrs</td>
<td>16</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
Objectives
At the end of the course (30 hours + personal work), the students will be able to:

- understand what are the key points in defining the kinematics of a beam.
- define the problem of the equilibrium of a beam or a lattice trusses in infinitesimal strain by writing a Boundary Value Problem (BVP), and choose the right set of boundary conditions.
- understand the different possible approaches available for the solution of that BVP, and solve it.

Course contents
This course is an introduction to structural mechanics. We focus on the study of the equilibrium of linear elastic slender structures like beams, but also lattice trusses, undergoing infinitesimal strain and displacements in order to design them with respect to external loads. This will provide some of the basic tools for engineers to design mechanical systems. The basic concepts required for this course will have already been introduced in the continuum mechanics course during the first semester. These concepts are here particularized for slender structures; the same methodology of analysis of a problem is also followed during this course.

The course outline is as follows:

- Study of 3D solutions of beams: torsion and pure bending
- Introduction to the beam theory:
 - kinematics,
 - modeling of internal forces,
 - equilibrium and boundary conditions,
 - writing of the Boundary Value Problem (BVP).
- Study of the in-plane bending subproblem.
 - Force and displacement solution approaches
 - Isostatic/hyperstatic beams, and strength criteria applied to beams
- Study of lattice trusses
 - writing of the Boundary Value Problem (BVP); examples.
- Opening:
 - buckling of beams,
 - Vibration of beams.

Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>5</td>
<td>16 hrs</td>
<td>14 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

Page 19 of 24
CONFERENCES AND INITIATION TO RESEARCH
COMPUTATIONAL MECHANICS
YEAR 1 - SPRING SEMESTER

LEAD PROFESSOR: Christian BURTIN

Objectives
At the end of the course, the students will be able to:

- Write a scientific and technical paper on mechanical engineering area
- Establish the reasoning of scientific paper writing
- Present orally and clearly scientific data in the context of mechanical engineering
- Write the abstract on an article

Course contents
The goal is preparing undergraduate students to start a PhD or any relative research activity (academic or industrial) in the context of mechanical engineering. The course INITR is composed of four main parts:

Part A: lecture on IMRAD concept
Part B: Scientific paper reading and analysis based on IMRAD
Part C: Oral presentation and discussion
Part D: How to write the abstract of an article

These parts represent how to organize and publish (Part B and part D), how to communicate (Part C) and how to prepare and present a technical and scientific report (Part A). Applications are given for engineering works.

Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>2</td>
<td>2 hrs</td>
<td>12 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
</tr>
</tbody>
</table>
NUMERICAL ANALYSIS
COMPUTATIONAL MECHANICS
YEAR 1 - SPRING SEMESTER

LEAD PROFESSOR: Anthony NOUY

Objectives
This course covers both theoretical and practical aspects of numerical analysis. At the end of the course (30 hours + personal work) the students will be able to understand classical numerical methods used in computational science for the solution of systems of equations, the computation of eigenvalues of matrices, the approximation or integration of functions.

Course contents
- Fundamentals of linear algebra.
- Linear systems of equations.
- Eigenvalue problems.
- Nonlinear systems of equations.
- Approximation and interpolation of functions.
- Numerical integration.

Course material

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>5</td>
<td>16 hrs</td>
<td>14 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
CULTURAL AND COMMUNICATION ENGLISH
COMPUTATIONAL MECHANICS
YEAR 1 - SPRING SEMESTER

LEAD PROFESSOR: Spencer HAWKRIDGE

Objectives

Interview techniques and communicational English:

- Understand the general concepts of interactive communication
- Build a media project
- Acquire interview techniques
- Understand the process of sourcing and checking facts and figures
- Understand issues related to plagiarism
- Create a bibliography
- Behavioral skills in an inter-cultural environment:
 - Strengthen self-confidence and capacity for interaction
 - Develop active listening and reformulation skills
 - Develop networking skills

Course contents

Cultural and Communicational English: exercises to explore in practice the areas of culture and communication.
Media project (for example: prepare, conduct and promote interviews for a radio programme: L’Heure Centrale (http://www.euradionantes.eu/emission/l-heure-centralienne), with the contribution of professors, PhD students, industrial partners, industry players at fairs, etc.

Course material

Written and televised press, information and digital tools, general documents business environment and company strategies.
Internet conferences (Ted Talks, etc.), our own educational materials on Hippocampus (Moodle).
Our own eZoomBook template for the Intercultural project.

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>0 hrs</td>
<td>32 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
</tr>
</tbody>
</table>

Page 22 of 24
Objectives

The objective is to familiarize the learner with the French language and French culture through an entertaining task-based communicative language teaching, focused on speaking combined with:

- Phonetics
- Self-correcting exercises on our learning platform
- Learning Lab activities
- Project work
- Tutoring

Course objectives include the acquisition and reinforcement of vocabulary, syntax, and pronunciation by both traditional means and through the use of digital resources. Students will learn general French, develop language skills of oral and written comprehension and expression.

After completing this course (32 hours + personal work), the students will be able to communicate in spoken and written French, in a simple, but clear manner, on familiar topics in the context of study, hobbies etc. Another important goal of this course is to introduce the student to French culture. At the end of the course (2 semesters), complete beginners can achieve an A1 level and some aspects of the A2 of The Common European Framework of Reference for Languages. More advanced students may aim for B1/B2 levels.

Course contents

Full range of practical communication language exercises: reading comprehension, listening comprehension, written expression, oral expression.

Learners will be able to use the foreign language in a simple way for the following purposes:

1. Giving and obtaining factual information:
 - personal information (e.g. name, address, place of origin, date of birth, education, occupation)
 - non-personal information (e.g. about plMechanical Engineering - Advanced manufacturing and how to get there, time of day, various facilities and services, rules and regulations, opening hours, where and what to eat, etc.)

2. Establishing and maintaining social and professional contacts, particularly:
 - meeting people and making acquaintances
 - extending invitations and reacting to being invited
 - proposing/arranging a course of action
 - exchanging information, views, feelings, wishes, concerning matters of common interest, particularly those relating to personal life and circumstances, living conditions and environment, educational/occupational activities and interests, leisure activities and social life
3. Carrying out certain transactions:
 - making arrangements (planning, tickets, reservations, etc.) for travel, accommodation, appointments, leisure activities
 - making purchases
 - ordering food and drink

Course material

Preparation manuals, our own tailor-made documents, written and televised press, internet, general civilization documents, digital tools, our own educational materials on Hippocampus (Moodle).

<table>
<thead>
<tr>
<th>LANGUAGE OF INSTRUCTION</th>
<th>ECTS CREDITS</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
<th>LABO</th>
<th>PROJECT</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
<td>0 hrs</td>
<td>32 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>0 hrs</td>
</tr>
</tbody>
</table>